Brian Willis

WillisBrian_profileBrian Willis
Associate Professor, Department of Chemical and Biomolecular Engineering
Ph.D., MIT (1999)

Department of Chemical & Biomolecular Engineering
191 Auditorium Road, Unit 3222
Storrs, CT 06269-3222
Office: EII-209
Phone: (860) 486-9429
Email:   Web:




Research Interests

  • Photocatalysis
  • Atomic Layer Deposition
  • Nanofabrication
  • Plasmonic Nanodevices
  • Surface Science

Awards & Honors

2007 Nanotech Measurement Contest (sponsored by Keithley Instruments, Inc.), 2nd place (with graduate student R. Gupta)
2005 National Science Foundation Career Award
2003 Emmert Faculty Fellow 2003
1992 Dow Award for 1st Course in Chemical Engineering

Recent Publications

Wang, K. Fu, B.G. Willis, “Nucleation and growth of MgO atomic layer deposition: A real-time spectroscopic ellipsometry study,” J. Vac. Sci. Technol. A, v. 31 (6) (2013).

Wang, K. Fu, B.G. Willis, “Catalytic reaction and metallic phase in atomic layer deposition of Al2O3/MgO/Pt structure,” ECS Solid State Letters, 2 (11) N39 (2013).

Huang, J.T. Arena, S.S. Manickam, X.Jiang, B. G. Willis and Jeffrey R. McCutcheon, “Improved Mechanical Properties and Hydrophilicity of Electrospun Nanofiber Membranes for Filtration Applications by Dopamine Modification,” J. Membrane Science, v. 460, p. 241 (2014).

Jiang, X. Q.; Wang, H.; Qi, J.; Willis, B. G.: In-situ spectroscopic ellipsometry study of copper selective-area atomic layer deposition on palladium. Journal of Vacuum Science & Technology A 32, 041513 (2014).  

Li, H.; Jiang, X.; B.G. Willis: Prevailing Intermolecular Bonding for Dinitrotoluene Self-Assembled Monolayers on Au(111). J. Phys. Chem. C 118, 14418-14426 (2014). 

G. Willis, J. Qi, X. Jiang, J. Chen, G. J. Weisel, and D. T. Zimmerman, ”Selective-Area Atomic Layer Deposition of Copper Nanostructures for Direct Electro-Optical Solar Energy Conversion,” Eds: F. Roozeboom, S. De Gendt, A.Delabie, J.W. Elam, A. Londergan, O. van der Straten, Atomic Layer Deposition Applications 10, ECS Transactions, v. 64 (9) p. 253. 

R.A. Wambold, J.M. Chen, P.H. Cutler, N.M. Miskovsky, J. Qi, G.J. Weisel, B.G. Willis, Darin T. Zimmerman, Tunable optical extinction of nano-antennas for solar energy conversion from near-infrared to visible, in Plasmonics: Metallic Nanostructures and Their Optical Properties XIII, Allan D. Boardman; Din Ping Tsai, Editors, Proceedings of SPIE Vol. 9547 (SPIE, Bellingham, WA 2015), 95471H.  

Fu, K.; Willis, B. G.: “Characterization of DNA as a Solid-State Sorptive Vapor Sensing Material,” Sensors and Actuators B-Chemical 220, 1023 (2015). 

Hsu, I. J.; Chen, J. G.; Jiang, X.; B.G. Willis: Atomic layer deposition synthesis and evaluation of core-shell Pt-WC electrocatalysts. J. Vac. Sci. Technol. A 33, 01A129 (2015).  

Liu, Y.; Zhang, L.; B.G. Willis; Mustain, W. E.: Importance of particle size and distribution in achieving high-activity, high-stability oxygen reduction catalysts. ACS Catalysis 5, 1560 (2015). 

Fu, K.; Chen, S.; Zhao, J.; Willis, B. G.: “Dielectrophoretic Assembly of Gold Nanoparticles in Nanoscale Junctions for Rapid, Miniature Chemiresistor Vapor Sensors,” ACS Sensors 1, 444 (2016). 

Wambold; B.D. Borst; J. Qi; G.J. Weisel; B.G. Willis; Zimmerman, D. T.: “Tunable plasmonic response of metallic nano-antennna heterodimer arrays modified by atomic-layer deposition,” Journal of Nanophotonics 10, 026024 (2016). 

D.T. Zimmerman, R.A. Wambold, G.J. Weisel, and B.G. Willis, “Optimally-tuned plasmonic nanoantenna dimer arrays for electro-optical sensing,” 2016 IEEE Photonics Conference Proceedings, Waikoloa, Hawaii, p. 412 (2016).   

Qi, D. Zimmerman, G.J. Weisel, B.G. Willis, “Nucleation and Growth of Copper Selective-area Atomic Layer Deposition on Palladium Nanostructures,” Journal of Chemical Physics, 147, 154702 (2017); doi: 10.1063/1.4996188.

D.T. Zimmerman, B.D. Borst, C.J. Carrick, J.M. Lent, R.A. Wambold, G.J. Weisel, and B.G. Willis, “Optical properties of electrically-connected plasmonic nanoantenna dimer arrays,” Journal of Applied Physics, 123, 063101 (2018); doi: 10.1063/1.5008511