Avinash M. Dongare

DMSE_094-EditAvinash M. Dongare
Associate Professor
United Technologies Corporation (UTC) Professor in Engineering Innovation
Director for Graduate Studies
Ph.D., University of Virginia, Charlottesville (2008) 

Department of Materials Science and Engineering
97 North Eagleville Road, Storrs, CT 06269-3136
Office: IMS-153
Phone: (860) 486-2592
E-mail: dongare@uconn.edu    Web: http://dongare.group.uconn.edu/



Current Research

Development and application of advanced computational methods (molecular dynamics, Monte Carlo, density functional theory, coarse-grained methods, etc.) to investigate the behavior and properties of novel materials across multiple scales. Some of the current research projects are:

  • Mechanics of nanostructured materials
  • Corrosion related degradation and failure in extreme environments
  • Electronic properties of nanostructured materials
  • Materials in extreme environments (Shock, high strain rates, high pressures, high temperatures)
  • Thermodynamics and phase transformations
  • Interfaces effects on mechanical behavior


Awards & Honors

2015 The Minerals, Metals, and Materials (TMS) Society Young leader Professional Development Award
2015 NSF Faculty Early Career Development (CAREER) Award
Academic Year 2014-2015 Outstanding Faculty Award, Materials Science and Engineering, University of Connecticut
Summer 2014 UConn Junior Faculty Summer Fellowship
Summer 2013 ORISE/ORAU Visiting Faculty Fellow, US Army Research Laboratory
12/2007 National Research Council – Research Associateship Award: U. S. Army Research Office


Recent Publications

G Agarwal, RR Valisetty, AM Dongare, (2020), Shock wave compression behavior and dislocation density evolution in Al microstructures at the atomic scales and the mesoscales, Int. J. Plast.: 102678. Doi:https://doi.org/10.1016/j.ijplas.2020.102678

S Suresh, S-W Lee, M Aindow, HD Brody, VK Champagne, AM Dongare, (2020), Mesoscale modeling of jet initiation behavior and microstructural evolution during cold spray single particle impact, Acta Mater. 182: 197. Doi:https://doi.org/10.1016/j.actamat.2019.10.039

AM Dongare, (2020), Challenges to model the role of heterogeneities on the shock response and spall failure of metallic materials at the mesoscales, Journal of Materials Science 55: 3157. Doi:https://doi.org/10.1007/s10853-019-04260-7

J Chen, SN Mathaudhu, N Thadhani, AM Dongare, (2020), Unraveling the Role of Interfaces on the Spall Failure of Cu/Ta Multilayered Systems, Sci. Rep. 10: 208. Doi:https://doi.org/10.1038/s41598-019-57048-9

G Agarwal, AM Dongare, (2019), Deformation Twinning in Polycrystalline Mg Microstructures at High Strain Rates at the Atomic Scales, Sci. Rep. 9: 3550. Doi:https://doi.org/10.1038/s41598-019-39958-w

J Chen, SN Mathaudhu, N Thadhani, AM Dongare, (2019), Correlations between dislocation density evolution and spall strengths of Cu/Ta multilayered systems at the atomic scales: The role of spacing of KS interfaces, Materialia 5: 100192. Doi:https://doi.org/10.1016/j.mtla.2018.100192

R Valisetty, AM Dongare, J Ianni, (2019), High performance computing simulations of spall phenomenon in a submicron thick nanocrystalline aluminum, Modell. Simul. Mater. Sci. Eng. 27: 065015. Doi:https://doi.org/10.1088/1361-651x/ab2796

J Chen, EN Hahn, AM Dongare, SJ Fensin, (2019), Understanding and predicting damage and failure at grain boundaries in BCC Ta, J. Appl. Phys. 126: 165902. Doi:https://doi.org/10.1063/1.5111837

TJ Flanagan, BA Bedard, AM Dongare, et al., (2019), Mechanical properties of supersonic-impacted Al6061 powder particles, Scripta Mater. 171: 52. Doi:https://doi.org/10.1016/j.scriptamat.2019.06.024

B Dutta, Y Wu, J Chen, et al., (2019), Partial Surface Selenization of Cobalt Sulfide Microspheres for Enhancing the Hydrogen Evolution Reaction, ACS Catalysis 9: 456. Doi:https://doi.org/10.1021/acscatal.8b02904

S Galitskiy, DS Ivanov, AM Dongare, (2018), Dynamic evolution of microstructure during laser shock loading and spall failure of single crystal Al at the atomic scales, J. Appl. Phys. 124: 205901. Doi:10.1063/1.5051618

G Agarwal, AM Dongare, (2018), Defect and damage evolution during spallation of single crystal Al: Comparison between molecular dynamics and quasi-coarse-grained dynamics simulations, Computational Materials Science 145: 68. Doi:https://doi.org/10.1016/j.commatsci.2017.12.032

SK Nayak, CJ Hung, V Sharma, et al., (2018), Insight into point defects and impurities in titanium from first principles, npj Computational Materials 4: 11. Doi:https://doi.org/10.1038/s41524-018-0068-9

S Suresh, S-W Lee, M Aindow, HD Brody, VK Champagne, AM Dongare, (2018), Unraveling the Mesoscale Evolution of Microstructure during Supersonic Impact of Aluminum Powder Particles, Sci. Rep. 8: 10075. Doi:https://doi.org/10.1038/s41598-018-28437-3

J Wang, R Namburu, M Dubey, AM Dongare, (2018), Origins of Moiré Patterns in CVD-grown MoS2 Bilayer Structures at the Atomic Scales, Sci. Rep. 8: 9439. Doi:https://doi.org/10.1038/s41598-018-27582-z

J Wang, AM Dongare, (2018), Density functional theory study of electronic structure of defects and the role on the strain relaxation behavior of MoS2 bilayer structures, Journal of Materials Science 53: 9064. Doi:https://doi.org/10.1007/s10853-018-2220-9

J Chen, MA Tschopp, AM Dongare, (2018), Role of nanoscale Cu/Ta interfaces on the shock compression and spall failure of nanocrystalline Cu/Ta systems at the atomic scales, Journal of Materials Science 53: 5745. Doi:https://doi.org/10.1007/s10853-017-1879-7

BA Bedard, TJ Flanagan, AT Ernst, et al., (2018), Microstructure and Micromechanical Response in Gas-Atomized Al 6061 Alloy Powder and Cold-Sprayed Splats, J. Therm. Spray Technol. 27: 1563. Doi:https://doi.org/10.1007/s11666-018-0785-0

R Valisetty, A Rajendran, G Agarwal, A Dongare, J Ianni, R Namburu, (2018), HPC simulations of shock front evolution for a study of the shock precursor decay in a submicron thick nanocrystalline aluminum, Modell. Simul. Mater. Sci. Eng. 26: 055008. Doi:https://doi.org/10.1088/1361-651x/aac1c3

W Wu, J Wang, P Ercius, et al., (2018), Giant Mechano-Optoelectronic Effect in an Atomically Thin Semiconductor, Nano Lett. 18: 2351. Doi:https://doi.org/10.1021/acs.nanolett.7b05229

full publication list